Ontologisches Beweis
Ass.1: P(φ).P(ψ) ⊃ P(φ.ψ) Ass.2: P(φ) ∨ P(-φ) Def.1: G(x) ≡ (φ)[P(φ) ⊃ φ(x)] Def.2: φ Ess. x ≡ (ψ)[ψ(x) ⊃ N(y){φ(y) ⊃ ψ(y)]] Ass.3a: P(φ) ⊃ NP(φ) Ass.3b: ∼P(φ) ⊃ N∼P(φ) Theo.1: G(x) ⊃ G Ess. x Def.3: E(x) ≡ (φ)[φ Ess. x ⊃ N(∃x) φ(x)] Ass.4: P(E) Theo.2: G(x) ⊃ N(∃y)G(y) Therefore: (∃x)G(x) ⊃ N(∃y)G(y) M(∃x)G(x) ⊃ MN(∃y)G(y) M(∃x)G(x) ⊃ N(∃y)G(y) Ass.5: P(φ).N(φ⊃ψ):⊃P(ψ)
K. Gödel, 1970